English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BMC Genomics 2009-Dec

Comparative study of protein-protein interaction observed in PolyGalacturonase-Inhibiting Proteins from Phaseolus vulgaris and Glycine max and PolyGalacturonase from Fusarium moniliforme.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Aditi Maulik
Hiren Ghosh
Soumalee Basu

Keywords

Abstract

BACKGROUND

The PolyGalacturonase-Inhibiting Proteins (PGIP) of plant cell wall limit the invasion of phytopathogenic organisms by interacting with the enzyme PolyGalacturonase (PG) they secrete to degrade pectin present in the cell walls. PGIPs from different or same plant differ in their inhibitory activity towards the same PG. PGIP2 from Phaseolus vulgaris (Pv) inhibits the PG from Fusarium moniliforme (Fm) although PGIP1, another member of the multigene family from the same plant sharing 99% sequence similarity, cannot. Interestingly, PGIP3 from Glycine max (Gm) which is a homologue of PGIP2 is capable of inhibiting the same PG although the extent of similarity is lower and is 88%. It therefore appears that subtle changes in the sequence of plant PGIPs give rise to different specificity for inhibiting pathogenic PGs and there exists no direct dependence of function on the extent of sequence similarity.

RESULTS

Structural information for any PGIP-PG complex being absent, we resorted to molecular modelling to gain insight into the mechanism of recognition and discrimination of PGs by PGIPs. We have built homology models of PvPGIP1 and GmPGIP3 using the crystal structure of PvPGIP2 (1OGQ) as template. These PGIPs were then docked individually to FmPG to elucidate the characteristics of their interactions. The mode of binding for PvPGIP1 to FmPG considerably differs from the mode observed for PvPGIP2-FmPG complex, regardless of the high sequence similarity the two PGIPs share. Both PvPGIP2 and GmPGIP3 despite being relatively less similar, interact with residues of FmPG that are known from mutational studies to constitute the active site of the enzyme. PvPGIP1 tends to interact with residues not located at the active site of FmPG. Looking into the electrostatic potential surface for individual PGIPs, it was evident that a portion of the interacting surface for PvPGIP1 differs from the corresponding region of PvPGIP2 or GmPGIP3.

CONCLUSIONS

van der Waals and electrostatic interactions play an active role in PGIPs for proper recognition and discrimination of PGs. Docking studies reveal that PvPGIP2 and GmPGIP3 interact with the residues constituting the active site of FmPG with implications that the proteins bind/block FmPG at its active site and thereby inhibit the enzyme.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge