English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1990-Sep

Comparison of the Kinetic Behavior toward Pyridine Nucleotides of NAD-Linked Dehydrogenases from Plant Mitochondria.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
N Pascal
R Dumas
R Douce

Keywords

Abstract

In this article we compare the kinetic behavior toward pyridine nucleotides (NAD(+), NADH) of NAD(+)-malic enzyme, pyruvate dehydrogenase, isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, and glycine decarboxylase extracted from pea (Pisum sativum) leaf and potato (Solanum tuberosum) tuber mitochondria. NADH competitively inhibited all the studied dehydrogenases when NAD(+) was the varied substrate. However, the NAD(+)-linked malic enzyme exhibited the weakest affinity for NAD(+) and the lowest sensitivity for NADH. It is suggested that NAD(+)-linked malic enzyme, when fully activated, is able to raise the matricial NADH level up to the required concentration to fully engage the rotenone-resistant internal NADH-dehydrogenase, whose affinity for NADH is weaker than complex I.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge