English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1993-Jul

Complementary immunolocalization patterns of cell wall hydroxyproline-rich glycoproteins studied with the use of antibodies directed against different carbohydrate epitopes.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
K M Swords
L A Staehelin

Keywords

Abstract

Antisera raised against the major hydroxyproline-rich glycoprotein (HRGP) in carrot (Daucus carota L.) taproot, extensin-1, and a minor HRGP, extensin-2, were characterized by western blot analysis, enzyme-linked immunosorbent assay, and periodate oxidation and found to be directed against carbohydrate epitopes shared by both glycoproteins. The anti-extensin-1 antibodies (gE1) target periodate-sensitive epitopes and may recognize the terminal alpha-1,3-arabinoside of extensin-1. The anti-extensin-2 antibodies (gE2) recognize periodate-insensitive epitopes, possibly binding the reducing, internal beta-1,2-arabinosides on the carbohydrate side chains. Despite the cross-reactivity of these antibodies, immunolocalization studies of carrot taproot and green bean (Phaseolus vulgaris L.) leaf tissues reveal a spatial segregation of gE1- and gE2-labeling patterns. The gE1 antibodies bind only to the cellulose-rich region of the cell wall (J.P. Staehelin and L.A. Stafstrom [1988] Planta 174: 321-332), whereas gE2 labeling is restricted to the expanded middle lamella at three cell junctions. Periodate oxidation of nonosmicated, thin-sectioned tissue abolishes gE1 labeling but leads to labeling of the entire cell wall by gE2, presumably as a result of unmasking cryptic epitopes on extensin-1 in the cellulose layer. Purified extensin-2 protein is more efficient than extensin-1 protein at agglutinating avirulent Pseudomonas strains lacking extracellular polysaccharide. Our results indicate that extensin-2 does not form a heterologous HRGP network with extensin-1 and that, in contrast to extensin-1, which appears to serve a structural role, extensin-2 could participate in passive defense responses against phytopathogenic bacteria.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge