English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
World Journal of Urology 2019-Feb

Complications related to use of mesh implants in surgical treatment of stress urinary incontinence and pelvic organ prolapse: infection or inflammation?

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Naşide Mangir
Sabiniano Roman
Christopher Chapple
Sheila MacNeil

Keywords

Abstract

The surgical mesh material used in the surgical treatment of stress urinary incontinence (SUI) and pelvic organ prolapse (POP) in women is associated with significant complications in some women. This has recently become a public health issue with involvement of national parliaments and regulatory bodies. The occurrence of mesh complications is thought to be a result of multifactorial processes involving problems related to the material design, the surgical techniques used and disease, and patient-related factors. However, the infectious complications and mesh-tissue interactions are least studied. The aim of this article is to review any previous clinical and basic scientific evidence about the contribution of infectious and inflammatory processes to the occurrence of mesh-related complications in SUI and POP. A literature search for the relevant publications without any time limits was performed on the Medline database. There is evidence to show that vaginal meshes are associated with an unfavourable host response at the site of implantation. The underlying mechanisms leading to this type of host response is not completely clear. Mesh contamination with vaginal flora during surgical implantation can be a factor modifying the host response if there is a subclinical infection that can trigger a sustained inflammation. More basic science research is required to identify the biological mechanisms causing a sustained inflammation at the mesh-tissue interface that can then lead to contraction, mesh erosion, and pain.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge