English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Physiologia Plantarum 2019-Feb

Comprehensive dynamic transcriptome analysis at two seed germination stages in maize (Zea mays L.).

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Zanping Han
Bin Wang
Lei Tian
Shunxi Wang
Jun Zhang
ShuLei Guo
Hengchao Zhang
Lengrui Xu
Yanhui Chen

Keywords

Abstract

Seed germination, as an integral stage of crop production, directly affects Zea mays (maize) yield and grain quality. However, the molecular mechanisms of seed germination remain unclear in maize. We performed comparative transcriptome analysis of two maize inbred lines, Yu82 and Yu537A, at two stages of seed germination. Expression profile analysis during seed germination revealed that a total of 3381 and 4560 differentially expressed genes (DEGs) were identified in Yu82 and Yu537A at the two stages. Transcription factors were detected from several families, such as the bZIP, ERF, WRKY, MYB and bHLH families, which indicated that these transcription factor families might be involved in driving seed germination in maize. Prominent DEGs were submitted for KEGG enrichment analysis, which included plant hormones, amino acid mechanism, nutrient reservoir, metabolic pathways and ribosome. Of these pathways, genes associated with plant hormones, especially gibberellins, abscisic acid and auxin may be important for early germination in Yu82. In addition, DEGs involved in amino acid mechanism showed significantly higher expression levels in Yu82 than in Yu537A, which indicated that energy supply from soluble sugars and amino acid metabolism may contribute to early germination in Yu82. This results provide novel insights into transcriptional changes and gene interactions in maize during seed germination.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge