English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Cell Reports 2015-Sep

Constitutive expression of Arabidopsis MYB transcription factor, AtMYB11, in tobacco modulates flavonoid biosynthesis in favor of flavonol accumulation.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Ashutosh Pandey
Prashant Misra
Prabodh Kumar Trivedi

Keywords

Abstract

CONCLUSIONS

Heterologous expression of AtMYB11 , a flavonol-specific transcription factor from Arabidopsis , in tobacco modulates flavonoid biosynthesis, however, with a lower efficiency as compared to its paralogs AtMYB12 and AtMYB111. Transcriptional regulation is the most important means for controlling flavonoid biosynthesis under temporal and spatial cues. In Arabidopsis, three functionally redundant MYB transcription factors (AtMYB11, AtMYB111 and AtMYB12) have been characterized as flavonol-specific regulators which positively modulate expression of biosynthetic genes involved in flavonol biosynthesis. Based on expression of AtMYB111 and AtMYB12 in heterologous systems, studies suggest that these transcription factors can be used to develop plants with enhanced flavonol biosynthesis. The potential of AtMYB11 to activate flavonol biosynthesis in a heterologous system has not yet been studied. In this study, the regulatory potential of AtMYB11 has been studied in Nicotiana tabacum by developing transgenic plants constitutively expressing AtMYB11. Our analysis using leaf and petal tissues of the transgenic plants indicates that AtMYB11 enhances flavonol and chlorogenic acid (CGA) biosynthesis in tobacco through up-regulation of the biosynthetic genes. Activation of flavonol biosynthesis in tobacco by AtMYB11 is not as pronounced as with AtMYB12 or AtMYB111. Taken together, these results reveal a differential regulatory mechanism in plants for modulating flavonol biosynthesis. This study demonstrated that AtMYB11 can be strategically used for enhancing the health beneficial flavonols in species other than Arabidopsis.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge