English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular BioSystems 2015-Nov

Construction and analysis of correlation networks based on gas chromatography-mass spectrometry metabonomics data for lipopolysaccharide-induced inflammation and intervention with volatile oil from Angelica sinensis in rats.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Yong-li Hua
Peng Ji
Zi-yu Xue
Yan-ming Wei

Keywords

Abstract

Angelica sinensis (AS) is a well-known important traditional Chinese medicine that yields a volatile oil with anti-inflammatory effects. However, the holistic therapeutic effects and the mechanism underlying such effects of the volatile oil of A. sinensis (VOAS) are not yet well understood. Here, a gas chromatography-mass spectrometry-based metabonomic study was conducted to explore the significantly altered metabolites for better understanding of VOAS and to assess the integral efficacy of VOAS on a lipopolysaccharide (LPS)-induced inflammation rat model. Principal component analysis was used to investigate the global metabonomic alterations and to evaluate the therapeutic effects of VOAS in rats. Clear separations were observed in the comparison of the metabolite profiles of the normal control (NC) group, the LPS-stimulated group (MI), the VOAS group, and the dexamethasone (Dex) group. VOAS exerted therapeutic effects on the LPS-stimulated group, which were in accordance with the results of cytokine analyses and blood physiobiochemical assay. Furthermore, a total of 20, 17, and 22 metabolites distributed in 27 metabolic pathways were respectively identified in plasma, liver, and lung samples as significantly altered metabolites of MI, VOAS, Dex, and NC of the same background. Network analysis revealed that glycine, glutamate, malic acid, succinate, arachidonic acid, glycerol, galactose, and glucose were hub metabolites of the inflammation correlation network. Results indicated that VOAS exhibited an anti-inflammatory effect by adjusting the Krebs cycle, improving the glucose content, and restoring the fatty acid metabolism.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge