English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Oncology Reports 2016-Aug

Continuous administration of bevacizumab plus capecitabine, even after acquired resistance to bevacizumab, restored anti-angiogenic and antitumor effect in a human colorectal cancer xenograft model.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Toshiki Iwai
MasamichI Sugimoto
Suguru Harada
Keigo Yorozu
Mitsue Kurasawa
Kaname Yamamoto

Keywords

Abstract

Vascular endothelial growth factor (VEGF)-neutralizing therapy with bevacizumab has become increasingly important for treating colorectal cancer. It was demonstrated that second-line chemotherapy together with bevacizumab after disease progression (PD) on first-line therapy including bevacizumab showed clinical benefits in metastatic colorectal and breast cancers (ML18147 trial, TANIA trial). One of the rationales for these trials was that the refractoriness to first-line therapy is caused by resistance to not so much bevacizumab as to the chemotherapeutic agents. Nevertheless, resistance to bevacizumab cannot be ruled out because VEGF-independent angiogenesis has been reported to be a mechanism of resistance to anti-VEGF therapy. In this study, we used a xenograft model with the human colon cancer HT-29 cells to investigate the mechanisms underlying the effect of continued administration of bevacizumab plus capecitabine even after resistance to bevacizumab was acquired. The combination of capecitabine plus bevacizumab exhibited significantly stronger antitumor and anti-angiogenic activities than did monotherapy with either agent. Capecitabine treatment significantly increased the intratumoral VEGF level compared with the control group; however, the combination with bevacizumab neutralized the VEGF. Among angiogenic factors other than VEGF, intratumoral galectin-3, which reportedly promotes angiogenesis both dependent on, and independently of VEGF, was significantly decreased in the capecitabine group and the combination group compared with the control group. In an in vitro experiment, 5-fluorouracil (5-FU), an active metabolite of capecitabine, inhibited galectin-3 production by HT-29 cells. These results suggested that capecitabine has a dual mode of action: namely, inhibition of tumor cell growth and inhibition of galectin-3 production by tumor cells. Thus, capecitabine and bevacizumab may work in a mutually complementary manner in tumor angiogenesis inhibition to overcome the resistance caused by angiogenic factors other than VEGF. These results suggest the clinical relevance and the mechanism of action of treatment with bevacizumab in combination therapy beyond PD.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge