English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Medicine Reports 2014-Oct

Continuous hypoxia regulates the osteogenic potential of mesenchymal stem cells in a time-dependent manner.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Hao Ding
Song Chen
Jun-Hui Yin
Xue-Tao Xie
Zhen-Hong Zhu
You-Shui Gao
Chang-Qing Zhang

Keywords

Abstract

The effects of hypoxia on the osteogenic potential of mesenchymal stem cells (MSCs) have been previously reported. From these studies, possible factors affecting the association between hypoxia and the osteogenic differentiation of MSCs have been suggested, including hypoxia severity, cell origin and methods of induction. The effect of the duration of hypoxia, however, remains poorly understood. The aim of the present study was to investigate the effect of continuous hypoxia on the induced osteogenesis of MSCs. Rat MSCs were isolated and cultured in vitro. Once the cells had been cultured to passage three, they were switched to 1% oxygen and cultured either with or without osteogenic medium, while cells in the control groups were cultured under normoxia in corresponding conditions. Four osteogenic differentiation biomarkers, runt-related transcription factor 2, osteopontin, osteocalcin and alkaline phosphatase, were analyzed by quantitative polymerase chain reaction and western blotting at defined intervals throughout the culture period. In addition, Alizarin Red staining was used to assess changes in mineralization. The results showed that 1% hypoxia was able to enhance and accelerate the osteogenic ability of the MSCs during the initial phases of differentiation, and the protein expression of certain associated biomarkers was upregulated. However, continuous hypoxia was shown to impair osteogenesis in the latter stages of differentiation. These findings suggest that hypoxia can regulate the osteogenesis of MSCs in a time-dependent manner.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge