English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Basic and Clinical Pharmacology and Toxicology 2018-Nov

Contribution of Hepatic Retinaldehyde Dehydrogenase Induction to Impairment of Glucose Metabolism by High-Fat-Diet Feeding in C57BL/6J Mice.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jiong Xu
Mian Zhang
Xiangping Zhang
Hanyu Yang
Binbin Sun
Zhongjian Wang
Yaqian Zhou
Shuting Wang
Xiaodong Liu
Li Liu

Keywords

Abstract

Obesity and insulin resistance are associated with overexpression of retinaldehyde dehydrogenase 1 (RALDH1). We aimed to investigate the roles of hepatic RALDH1 induction in glucose metabolism impairment using mice fed with high-fat-diet (HFD). Mice were fed with HFD for 8 weeks and treated with RALDH inhibitor citral for another 4 weeks. Oral glucose tolerance test (OGTT), pyruvate tolerance test (PTT) and insulin tolerance test were performed. Expressions of phosphoenolpyruvate carboxykinase 1 (PCK1), glucokinase (GCK) and RALDH1 were measured. Therapeutic effects of citral were also documented in diabetic rats. Effects of retinaldehyde on PCK1 and GCK expressions were examined in rat primary hepatocytes and HepG2 cells. The results showed that HFD mice were characterized by hyperlipidaemia and insulin resistance, accompanied by significantly increased RALDH1 activity and expression. Citral (10 and 50 mg/kg) ameliorated HFD-induced hyperlipidaemia and insulin resistance, as demonstrated by the improved fasting glucose, insulin levels and lipid profiles. OGTT and PTT demonstrated that citral reversed HFD-induced glucose disposal impairment and glucose production enhancement. Citral also reversed the increased PCK1 expression and decreased GCK expression by HFD. Citral therapeutic effects were reconfirmed in diabetic rats. In vitro data indicated that retinaldehyde had the strongest PCK1 induction in primary hepatocytes of diabetic rats compared with HFD rats and control rats, in line with the increased RALDH1 expression. Citral reversed the retinaldehyde-induced PCK1 expression in primary rat hepatocytes and HepG2 cells. In conclusion, RALDH1 induction impaired glucose metabolism partly via modulating PCK1 and GCK expressions. Citral improved glucose metabolism through inhibiting RALDH activity.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge