English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Phytomedicine 2012-Feb

Contribution of flavonoids and catechol to the reduction of ICAM-1 expression in endothelial cells by a standardised Willow bark extract.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
A Freischmidt
G Jürgenliemk
B Kraus
S N Okpanyi
J Müller
O Kelber
D Weiser
J Heilmann

Keywords

Abstract

BACKGROUND

A quantified aqueous Willow bark extract (STW 33-I) was tested concerning its inhibitory activity on TNF-α induced ICAM-1 expression in human microvascular endothelial cells (HMEC-1) and further fractionated to isolate the active compounds.

RESULTS

At 50 μg/ml the extract, which had been prepared from Salix purpurea L., decreased ICAM-1 expression to 40% compared to control cells without showing cytotoxic effects. Further liquid-liquid partition revealed an ethyl acetate phase with potent reduction of ICAM-1 expression to 40% at 8 μg/ml. This fraction was comprehensively characterised by the isolation of flavanone aglyca and their corresponding glycosides, chalcone glycosides, salicin derivatives, cyclohexane-1,2-diol glycosides, catechol and trans-p-coumaric acid. All compounds were investigated for their activity on TNF-α induced ICAM-1 expression. The flavonoid and chalcone glycosides were not active up to 50 μM, whereas catechol and eriodictyol at the same concentration showed a significant reduction of ICAM-1 expression to 50% of control. Interestingly, other isolated flavanone aglyca like taxifolin, dihydrokaempferol and naringenin showed only weak or moderate inhibitory activity. Eriodictyol was a minor compound in the extract, whereas the catechol content in the extract (without excipients) reached 2.3%, determined by HPLC. One of the isolated cyclohexan-1,2-diol glucosides, 6'-O-4-hydroxybenzoyl-grandidentin, is a new natural compound.

CONCLUSIONS

As catechol is quantitatively important in Willow bark extracts it can be concluded from the in vitro data that not only flavonoids and salicin derivatives, but also catechol can probably contribute to the anti-inflammatory activity of Willow bark extracts.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge