English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Proceedings of the National Academy of Sciences of the United States of America 2005-Oct

Conversion of nicotine to nornicotine in Nicotiana tabacum is mediated by CYP82E4, a cytochrome P450 monooxygenase.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Balazs Siminszky
Lily Gavilano
Steven W Bowen
Ralph E Dewey

Keywords

Abstract

Nornicotine is a secondary tobacco alkaloid that is produced by the N-demethylation of nicotine. Nornicotine production and accumulation in tobacco are undesirable because nornicotine serves as the precursor in the synthesis of the well characterized carcinogen N'-nitrosonornicotine during the curing and processing of tobacco. Although nornicotine is typically a minor alkaloid in tobacco plants, in many tobacco populations a high percentage of individuals can be found that convert a substantial proportion of the nicotine to nornicotine during leaf senescence and curing. We used a microarray-based strategy to identify genes that are differentially regulated between closely related tobacco lines that accumulate either nicotine (nonconverters) or nornicotine (converters) as the predominant alkaloid in the cured leaf. These experiments led to the identification of a small number of closely related cytochrome P450 genes, designated the CYP82E2 family, whose collective transcript levels were consistently higher in converter versus nonconverter tobacco lines. RNA interference-induced silencing of the CYP82E2 gene family suppressed the synthesis of nornicotine in strong converter plants to levels similar to that observed in nonconverter individuals. Although each of the six identified members of the P450 family share >90% nucleotide sequence identity, sense expression of three selected isoforms revealed that only one (CYP82E4v1) was involved in the conversion of nicotine to nornicotine. Yeast expression analysis revealed that CYP82E4v1 functions as a nicotine demethylase. Identification of the gene(s) responsible for nicotine demethylation provides a potentially powerful tool toward efforts to minimize nornicotine levels, and thereby N'-nitrosonornicotine formation, in tobacco products.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge