English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Investigative Ophthalmology and Visual Science 2005-Sep

Correlation between inactive cathepsin D expression and retinal changes in mcd2/mcd2 transgenic mice.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Dan Zhang
Meliha Brankov
Mahindra T Makhija
Terry Robertson
Erik Helmerhorst
John M Papadimitriou
Piroska E Rakoczy

Keywords

Abstract

OBJECTIVE

To investigate the correlation between the presence of the inactive cathepsin D (CatD) and retinal changes in mcd2/mcd2 transgenic mice.

METHODS

Computational modeling was used to examine whether CatD mutants maintain competitive substrate binding. D407 cells were transfected with pcDNACatDM1 or pcDNACatDM2, containing procathepsin D (pro-CatD) with 6-bp (CatDM1) or 12-bp (CatDM2) deletions, respectively, flanking the pro-CatD cleavage site, and the aspartic protease activity of the transfected cells was measured. Subsequently, transgenic mice (mcd2/mcd2) containing CatDM2 were generated. Relative transgene copy number and transcript levels in the previously produced mcd/mcd (carrying CatDM1) and mcd2/mcd2 mice were measured by quantitative real-time PCR. Western blot analysis and aspartic protease activity were used to characterize the mutated proteins. Retinal changes were described by using color fundus photography and fluorescein angiography, histology, immunohistochemistry, and electron microscopy.

RESULTS

Computational modeling of the CatDM1 and CatDM2 structures indicated that the substrate binding site was not altered. There was limited or no aspartic protease activity associated with CatDM1 and CatDM2 proteins, respectively. Mcd2/mcd2 animals contained a higher amount of inactive CatD than mcd/mcd or wild-type mice. Retinal abnormalities in mcd2/mcd2 mice developed at 3 months of age, earlier than in mcd/mcd mice. These changes included hypopigmentation, hyperfluorescence, retinal pigment epithelial (RPE) cell depigmentation or clumping, cell proliferation, and pleomorphism. Proliferating cells were identified as being of RPE origin.

CONCLUSIONS

This study demonstrated a correlation between the presence of the inactive CatD in RPE cells and the development of ophthalmoscopic, cellular, and histologic changes in the retina.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge