English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Journal 2015-Sep

Cotton polyamine oxidase is required for spermine and camalexin signalling in the defence response to Verticillium dahliae.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Huijuan Mo
Xingfen Wang
Yan Zhang
Guiyin Zhang
Jinfa Zhang
Zhiying Ma

Keywords

Abstract

Verticillium dahliae is a destructive, soil-borne fungal pathogen that causes vascular wilt disease in many economically important crops worldwide. A polyamine oxidase (PAO) gene was identified and cloned by screening suppression subtractive hybridisation and cDNA libraries of cotton genotypes tolerant to Verticillium wilt and was induced early and strongly by inoculation with V. dahliae and application of plant hormone. Recombinant cotton polyamine oxidase (GhPAO) was found to catalyse the conversion of spermine (Spm) to spermidine (Spd) in vitro. Constitutive expression of GhPAO in Arabidopsis thaliana produced improved resistance to V. dahliae and maintained putrescine, Spd and Spm at high levels. Hydrogen peroxide (H2 O2 ), salicylic acid and camalexin (a phytoalexin) levels were distinctly increased in GhPAO-overexpressing Arabidopsis plants during V. dahliae infection when compared with wild-type plants, and Spm and camalexin efficiently inhibited growth of V. dahliae in vitro. Spermine promoted the accumulation of camalexin by inducing the expression of mitogen-activated protein kinases and cytochrome P450 proteins in Arabidopsis and cotton plants. The three polyamines all showed higher accumulation in tolerant cotton cultivars than in susceptible cotton cultivars after inoculation with V. dahliae. GhPAO silencing in cotton significantly reduced the Spd level and increased the Spm level, leading to enhanced susceptibility to infection by V. dahliae, and the levels of H2 O2 and camalexin were distinctly lower in GhPAO-silenced cotton plants after V. dahliae infection. Together, these results suggest that GhPAO contributes to resistance of the plant against V. dahliae through the mediation of Spm and camalexin signalling.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge