English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Food Biochemistry 2019-Aug

Crassocephalum rubens, a leafy vegetable, suppresses oxidative pancreatic and hepatic injury and inhibits key enzymes linked to type 2 diabetes: An ex vivo and in silico study.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Olajumoke Oyebode
Ochuko Erukainure
Collins Ibeji
Neil Koorbanally
Md Islam

Keywords

Abstract

Crassocephalum rubens falls under the wild edible, under-cultivated traditional leafy vegetables (TLV) in Africa; it is used by locals in managing diabetes mellitus among other diseases. This study investigated the in vitro, ex vivo antioxidant and antidiabetic potentials of different extracts of C. rubens. The ameliorative effects of the extracts on Fe2+ -induced oxidative injury was investigated ex vivo together with the effects of the aqueous extract on intestinal glucose absorption and muscle glucose uptake in freshly harvested tissues from normal rats. The aqueous extract was subjected to Liquid Chromatography-Mass Spectrometry (LC-MS) analysis to identify possible bioactive compounds which were then docked with the tested enzymes through in silico modeling. The extracts exhibited antioxidant activity, inhibited α-glucosidase and lipase enzyme activities, intestinal glucose absorption and enhanced muscle glucose uptake compared to controls. Sanguisorbic acid dilactone identified through LC-MS analysis showed a high binding affinity for catalase and lipase enzymes. PRACTICAL APPLICATIONS: The results of this study suggest that the aqueous extract of C. rubens possesses better antioxidant and possible antidiabetic potentials compared to other extracts which could be associated to the synergistic action of its identified bioactive compounds.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge