English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1986-May

Cross-linking patterns in salt-extractable extensin from carrot cell walls.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
J P Stafstrom
L A Staehelin

Keywords

Abstract

Extensins are hydroxyproline-rich glycoproteins (HRGPs) found in the primary cell walls of dicots. Extensin monomers are secreted into the wall and covalently bound to each other, presumably by isodityrosine (IDT) cross-links, to form a rigid matrix. Expression of the extensin matrix is correlated with inhibition of cell elongation during normal development and with increased resistance to virulent pathogens. We have isolated extensin from carrot root tissue (Daucus carota L.) by published techniques and have used gel filtration chromatography to purify fractions enriched in monomers and oligomers. We refer to this protein as "extensin-1" to distinguish it from "extensin-2," a second extensin-like HRGP from carrot which we will describe later. We prepared extensin-1 for electron microscopy by shadowing it with platinum. Monomers are highly elongated ( congruent with84 nanometers) and kinked at several sites. Kinks occur at all sites on molecules with nearly equal probability, but do not appear to occur at their ends. The distribution of kinks is similar to that of tyrosine-lysine-tyrosine sequences, which have been shown to be capable of forming intramolecular IDT cross-links, so we suggest that kinks are visible manifestations of intramolecular IDTs. Oligomers likely result from IDT cross-links between monomers, and may be regarded as transient precursors of the fully cross-linked matrix. Nearly 60% of cross-links involve the ends of molecules while the rest are scattered among internal sites. We discuss how the relative positions and proportions of intra- and intermolecular cross-links in extensin-1 may affect the structure, and in turn the function, of the extensin matrix.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge