English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Microscopy 1996-May

Cryofixing single cells and multicellular specimens enhances structure and immunocytochemistry for light microscopy.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
T I Baskin
D D Miller
J W Vos
J E Wilson
P K Hepler

Keywords

Abstract

Cryofixation is widely held to be superior to chemical fixation for preserving cell structure; however, the use of cryofixation has been limited chiefly to electron microscopy. To see if cryofixation would improve sample structure or antigenicity as observed through the light microscope, we cryofixed Nicotiana alata and Lilium longiflorum pollen tubes and Tradescantia virginina stamen hairs by plunge freezing. After freeze-substitution, and embedding in butylmethylmethacrylate, we found using the light microscope that the superiority of cryofixation over chemical fixation was obvious. Cryofixation, unlike chemical fixation, did not distort cell morphology and preserved microtubule and actin arrays in a form closely resembling that of living cells. Additionally, to test further the usefulness of cryofixation for light microscopy, we studied the appearance of cells and the retention of antigenicity in plunge-frozen multicellular organ. Roots of Arabidopsis thaliana were either chemically fixed or plunge frozen, and then embedded in the removable methacrylate resin used above. We found that plunge freezing preserved cell morphology far better than did chemical fixation, and likewise improved the appearance of both actin and microtubule arrays. Plunge-frozen roots also had cells with more life-like cytoplasm than those of chemically fixed roots, as assessed with toluidine-blue staining or high-resolution Nomarski optics. Damage from ice crystal formation could not be resolved through the light microscope, even in the interior of the root, 40-75 microns from the surface. We suggest that plunge freezing would enhance many investigations at the light microscope level, including those of multicellular organs, where damage from ice crystals may be less severe than artefacts from chemical fixation.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge