English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Inflammation 2018-Oct

Curcumin Attenuates Airway Inflammation and Airway Remolding by Inhibiting NF-κB Signaling and COX-2 in Cigarette Smoke-Induced COPD Mice.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jin Yuan
Renping Liu
Yaohui Ma
Zhaoqiang Zhang
Zehao Xie

Keywords

Abstract

The purpose of this study is to evaluate the therapeutic effects of curcumin on airway inflammation using LPS and cigarette smoke (LC)-induced COPD murine models and LPS-stimulated human bronchial epithelial (BEAS-2B) cells. In this research, COPD murine models were established after challenged with LPS for 2 days and exposed to cigarette smoke for 35 days. Treatment with curcumin for 10 days distinctly alleviated airway inflammation and airway remolding in LC-induced COPD mice according to the lung H&E histopathological examination. The number of neutrophils and lymphocytes in broncho alveolar lavage fluid (BALF) was significantly decreased in curcumin+LC-treated group compared with the LC-induced mice. Additionally, curcumin inhibited BEAS-2B cells proliferation, which suggested the preventive effect of curcumin on progressive airway remolding and inflammatory response mediated by bronchial epithelial cells. Further investigation demonstrated an underlying molecular mechanism for the therapeutic effects of curcumin may rely on the inhibition of the degradation of IκBα and COX-2 expression in curcumin+LC-treated COPD mice and LPS-stimulated BEAS-2B cells. Overall, curcumin alleviates the airway inflammation and airway remolding, which is closely related to inhibit the BEAS-2B cells proliferation and suppress the activation of NF-κB and COX-2 expression. These findings indicate that curcumin may be a potential agent for the therapy of COPD.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge