English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochimica et Biophysica Acta - General Subjects 1978-Aug

Cyanate modification of essential lysyl residues in the catalytic subunit of tobacco ribulosebisphosphate carboxylase.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
R Chollet
L L Anderson

Keywords

Abstract

Crystalline ribulose-1,5-bisphosphate carboxylase (3-phospho-D-glycerate carboxy-lyase (dimerizing), EC 4.1.1.39) isolated from tobacco (Nicotiana tabacum L.) leaf homogenates is irreversibly inactivated by incubation with potassium cyanate at pH 7.4. The rate of inactivation is pseudo first-order and linearly dependent on reagent concentration. In the presence of ribulosebisphosphate or high levels of CO2 and Mg2+ the rate constant for inactivation is reduced, suggesting that chemical modification occurs in the active site region of the enzyme. In contrast, neither the effector NADPH nor the activator Mg2+ alone significantly affect the rate of inactivation by cyanate; however, NADPH markedly enhances the protective effect of CO2 and Mg2+. Incubation of the carboxylase with potassium [14C] cyanate in the absence or presence of ribulosebisphosphate revealed that the substrate specifically reduces cyanate incorporation into the large catalytic subunits of the enzyme. Analysis of acid hydrolysates of the radioactive carboxylase indicated that the reagent carbamylates both NH2-terminal groups and lysyl residues in the large and small subunits. Comparison of the substrate-protected enzyme with the inactivated carboxylase revealed that ribulosebisphosphate preferentially reduces lysyl modification within the large subunit. The data here presented indicate that inactivation of ribulosebisphosphate carboxylase by cyanate or its reactive tautomer, isocyanic acid, results from the modification of lysyl residues within the catalytic subunit, presumably at the activator and substrate CO2 binding sites on the enzyme.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge