English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemical Society Transactions 2006-Dec

Cytochrome P450 mono-oxygenases in conifer genomes: discovery of members of the terpenoid oxygenase superfamily in spruce and pine.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
B Hamberger
J Bohlmann

Keywords

Abstract

Diterpene resin acids, together with monoterpenes and sesquiterpenes, are the most prominent defence chemicals in conifers. These compounds belong to the large group of structurally diverse terpenoids formed by enzymes known as terpenoid synthases. CYPs (cytochrome P450-dependent mono-oxygenases) can further increase the structural diversity of these terpenoids. While most terpenoids are characterized as specialized or secondary metabolites, some terpenoids, such as the phytohormones GA (gibberellic acid), BRs (brassinosteroids) and ABA (abscisic acid), have essential functions in plant growth and development. To date, very few CYP genes involved in conifer terpenoid metabolism have been functionally characterized and were limited to two systems, yew (Taxus) and loblolly pine (Pinus taeda). The characterized yew CYP genes are involved in taxol diterpene biosynthesis, while the only characterized pine terpenoid CYP gene is part of DRA (diterpene resin acid) biosynthesis. These CYPs from yew and pine are members of two apparently conifer-specific CYP families within the larger CYP85 clan, one of four plant CYP multifamily clans. Other CYP families within the CYP85 clan were characterized from a variety of angiosperms with functions in terpenoid phytohormone metabolism of GA, BR, and ABA. The recent development of EST (expressed sequence tag) and FLcDNA (where FL is full-length) sequence databases and cDNA collections for species of two conifers, spruce (Picea) and pine, allows for the discovery of new terpenoid CYPs in gymnosperms by means of large-scale sequence mining, phylogenetic analysis and functional characterization. Here, we present a snapshot of conifer CYP data mining, discovery of new conifer CYPs in all but one family within the CYP85 clan, and suggestions for their functional characterization. This paper will focus on the discovery of conifer CYPs associated with diterpene metabolism and CYP with possible functions in the formation of GA, BR, and ABA in conifers.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge