English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Toxicology 2001-Mar

Cytosolic xanthine oxidoreductase mediated bioactivation of ethanol to acetaldehyde and free radicals in rat breast tissue. Its potential role in alcohol-promoted mammary cancer.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
G D Castro
A M Delgado de Layño
M H Costantini
J A Castro

Keywords

Abstract

Epidemiological evidence links alcohol intake with increased risk in breast cancer. Not all the characteristics of the correlation can be explained in terms of changes in hormonal factors. In this work, we explore the possibility that alcohol were activated to acetaldehyde and free radicals in situ by xanthine dehydrogenase (XDh) and xanthine oxidase (XO) and/or aldehyde oxidase (AO). Incubation of cytosolic fraction with xanthine oxidoreductase (XDh+XO) (XOR) cosubstrates (e.g. NAD+, hypoxanthine, xanthine, caffeine, theobromine, theophylline or 1,7-dimethylxanthine) significantly enhanced the biotransformation of ethanol to acetaldehyde. The process was inhibited by allopurinol and not by pyrazole or benzoate or desferrioxamine and was not accompanied by detectable formation of 1HEt. However, hydroxylated aromatic derivatives of PBN were detected, suggesting either that hydroxyl free radicals might be formed or that XOR might catalyze aromatic hydroxylation of PBN. No bioactivation of ethanol to acetaldehyde was detectable when a cosubstrate of AO such as N-methylnicotinamide was included in cytosolic incubation mixtures. Results suggest that bioactivation of ethanol in situ to a carcinogen, such as acetaldehyde, and potentially to free radicals, might be involved in alcohol breast cancer induction. This might be the case, particularly also in cases of a high consumption of purine-rich food (e.g. meat) or beverages or soft drinks containing caffeine.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge