English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of integrative medicine 2018-01

Cytotoxic activity of the chemical constituents of Clerodendrum indicum and Clerodendrum villosum roots.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Pathom Somwong
Rutt Suttisri

Keywords

Abstract

The roots of two Thai medicinal plants, Clerodendrum indicum and Clerodendrum villosum are found in traditional medicine practices. The aim of this research was to preliminarily study the cytotoxicity of extracts of their roots, and the parts that possessed cytotoxic activity were separated on a chromatograph to identify their active compounds.

The extracts of both plants were screened for cytotoxicity on the SW620 cell line and the compounds isolated from the active extracts were further evaluated for their cytotoxic activity against five human cancer cell lines, including SW620, ChaGo-K-1, HepG2, KATO-III and BT-474 using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay.

Dichloromethane extracts of C. indicum and C. villosum were active against the SW620 cell line. Triterpenoids were mostly obtained from the extracts of these plants (0.28% and 1.02%, respectively) and exhibited varying degrees of cytotoxicity and specificity against the tested cell lines. Two triterpenoids, oleanolic acid 3-acetate and betulinic acid, displayed moderate to strong cytotoxicity toward all cancer cell lines, with 50% inhibitory concentration (IC50) values of 1.66-20.49 µmol/L, whereas 3β-hydroxy-D:B-friedo-olean-5-ene and taraxerol were cytotoxic to only the SW620 cell line (IC50 = 23.39 and 2.09 µmol/L, respectively). Triterpenoid, lupeol, showed potent cytotoxicity on both SW620 (IC50 = 1.99 µmol/L) and KATO-III cell lines (IC50 = 1.95 µmol/L), while a flavonoid, pectolinarigenin, displayed moderate cytotoxicity against these cells (IC50 = 13.05 and 24.31 µmol/L, respectively). Although the widely distributed steroid, stigmasterol, was effective against the SW620 cell line (IC50 = 2.79 µmol/L) and β-sitosterol was also active against SW620 (IC50 = 11.26 µmol/L), BT-474 (IC50 = 14.11 µmol/L) and HepG2 cancer cells (IC50 = 20.47 µmol/L), none of the characteristic 24β-ethylsteroids of either Clerodendrum species were shown to be cytotoxic.

This study is the first report on the presence of cytotoxic triterpenoids from the roots of these medicinal plants, which have been used in herbal formulas as an antipyretic. Our findings support further in-depth study of this pharmacological activity as an anticancer agent.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge