English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular and Cellular Biochemistry 2013-May

Cytotoxic effect of gambogic acid on SH-SY5Y neuroblastoma cells is mediated by intrinsic caspase-dependent signaling pathway.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Md Ataur Rahman
Nam-Ho Kim
Sung-Oh Huh

Keywords

Abstract

Gambogic acid (GA) is the dry resin of Garcinia hanburyi (Guttiferae) with potent anti-tumor activity, various bioactivities, including detoxification, homeostasis, anti-inflammatory, and parasiticide, whereas the effect of this natural compound on cancer cells has not been clearly clarified. Here, we examined cellular cytotoxicity by cell viability assay and DNA fragmentation by DNA-ladder assay. Activation of different protein expressions were detected by western blot analyses. We first demonstrated that GA reduces the human SH-SY5Y neuroblastoma cell viability with IC50 of 1.28 μM at 6 h which has less toxicity in fibroblast cells. However, lower concentration GA significantly downregulated the expression of anti-apoptotic protein including Bcl-2, Bcl-xL, and Mcl-1, which also dramatically activated cleaved caspase-9 and -3 in a dose- and time-dependent manner. Consequently, GA-induced cytotoxicity was not mediated by the Fas/FasL and PI3 K/AKT/GSK-3β signaling pathway. In addition, GA-induced cells showed damage morphology which had become cell rounding, neurite retraction, membrane blebbing and shrunken in a dose- and time-dependent manner that clearly indicates this morphological change might be due to the process of apoptosis which shows fragmented DNA. Therefore, the findings presented in this study demonstrate that apoptotic effects of GA on SH-SY5Y cells are mediated by intrinsic mitochondrion-dependent caspase pathway which suggests this natural compound might be effective as an anti-cancer agent for neuroblastoma malignancies.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge