English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Metabolism: Clinical and Experimental 2014-Sep

DNA methylation is altered in B and NK lymphocytes in obese and type 2 diabetic human.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
David Simar
Soetkin Versteyhe
Ida Donkin
Jia Liu
Luke Hesson
Vibe Nylander
Anna Fossum
Romain Barrès

Keywords

Abstract

OBJECTIVE

Obesity is associated with low-grade inflammation and the infiltration of immune cells in insulin-sensitive tissues, leading to metabolic impairment. Epigenetic mechanisms control immune cell lineage determination, function and migration and are implicated in obesity and type 2 diabetes (T2D). The aim of this study was to determine the global DNA methylation profile of immune cells in obese and T2D individuals in a cell type-specific manner.

METHODS

Fourteen obese subjects and 11 age-matched lean subjects, as well as 12 T2D obese subjects and 7 age-matched lean subjects were recruited. Global DNA methylation levels were measured in a cell type-specific manner by flow cytometry. We validated the assay against mass spectrometry measures of the total 5-methylcytosine content in cultured cells treated with the hypomethylation agent decitabine (r=0.97, p<0.001).

RESULTS

Global DNA methylation in peripheral blood mononuclear cells, monocytes, lymphocytes or T cells was not altered in obese or T2D subjects. However, analysis of blood fractions from lean, obese, and T2D subjects showed increased methylation levels in B cells from obese and T2D subjects and in natural killer cells from T2D patients. In these cell types, DNA methylation levels were positively correlated with insulin resistance, suggesting an association between DNA methylation changes, immune function and metabolic dysfunction.

CONCLUSIONS

Both obesity and T2D are associated with an altered epigenetic signature of the immune system in a cell type-specific manner. These changes could contribute to the altered immune functions associated with obesity and insulin resistance.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge