English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
3 Biotech 2018-Sep

De novo transcriptome analysis deciphered polyoxypregnane glycoside biosynthesis pathway in Gymnema sylvestre.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Kuldeepsingh A Kalariya
Dipal B Minipara
Ponnuchamy Manivel

Keywords

Abstract

Gymnema sylvestre is an important medicinal plant containing antidiabetic activity. Through de novo transcriptomic study, the pathways of polyoxypregnane glycosides were explored and candidate genes of these pathways were identified in G. sylvestre. High-quality raw reads were assembled into transcripts which resulted in 193,615 unigenes. These unigenes further decoded 58,274 coding DNA sequences (CDSs). Functional annotation of predicted CDSs was carried out using the protein databases, i.e., NCBI's non-redundant, Uniprot and Pfam. Eukaryotic orthologous group (KOG) classification and transcription factor analysis has revealed most CDS-enriched categories as "Signal transduction mechanism" and "Basic Helix loop helix" (bHLH) transcription factor family, respectively. A total of 16,569 CDSs were assigned minimum one Gene Ontology (GO) term. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis disclosed 235 CDSs which represented total 27 genes of pregnane glycoside pathways and 19 CDSs represented 10 important enzymes of polyoxypregnane glycoside biosynthesis, i.e., sterol 24-C-methyltransferase, cycloeucalenol cycloisomerase, Δ14-sterol reductase, C-8,7 sterol isomerase, sterol methyltransferase 2, C-5 sterol desaturase, sterol Δ7 reductase, Δ24 sterol reductase, 3β-hydroxysteroid dehydrogenase and progesterone 5β reductase (5βPOR). This transcriptome analysis provided an important resource for future functional genomic studies in G. sylvestre.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge