English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Cardiovascular Pharmacology 2003-Jun

Defibrillatory action of glibenclamide is independent from ATP-sensitive K+ channels and free radicals.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Csaba Csonka
Annamária Onody
Tamás Csont
Péter Ferdinandy

Keywords

Abstract

This study investigated whether glibenclamide exerts a defibrillatory action and if this action is mediated by a blockade of ATP-sensitive K+ channels (K(ATP)) or by an anti-free radical mechanism. Aerobically perfused isolated rat hearts were subjected to 10 min of pacing-induced ventricular fibrillation (VF) followed by 10 min of perfusion without pacing (post-VF period), in the presence of solvent (controls), 1 microM K(ATP) blocker glibenclamide, 10 microM K(ATP) opener cromakalim, and their combination, respectively. In controls, pacing-induced VF caused a significant deterioration in cardiac function in the post-VF period. Spontaneous defibrillation was 42%. Glibenclamide improved post-VF cardiac function and resulted in 100% (P < 0.05) spontaneous defibrillation. Cromakalim did not significantly affect post-VF cardiac function and the incidence of spontaneous defibrillation as compared with controls. The combination of the compounds improved cardiac function and resulted in 83% (P < 0.05) spontaneous defibrillation. In separate experiments, 2,5-dihydroxybenzoic acid formation in the perfusate as a marker of hydroxyl radical formation was measured by high-performance liquid chromatography and cardiac superoxide production was assessed by lucigenin-enhanced chemiluminescence during pacing-induced VF. Glibenclamide did not affect hydroxyl radical generation or myocardial superoxide content during VF. The conclusion is that glibenclamide exerts a defibrillatory action and improves post-VF cardiac function in rat hearts and these effects are independent from K(ATP) and free radicals.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge