English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Hepatology 2006-Feb

Deoxyribonuclease 1 aggravates acetaminophen-induced liver necrosis in male CD-1 mice.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Markus Napirei
Alexei G Basnakian
Eugene O Apostolov
Hans Georg Mannherz

Keywords

Abstract

An overdose of acetaminophen (APAP) (N-acetyl-p-aminophenol) leads to hepatocellular necrosis induced by its metabolite N-acetyl-p-benzoquinone-imine, which is generated during the metabolic phase of liver intoxication. It has been reported that DNA damage occurs during the toxic phase; however, the nucleases responsible for this effect are unknown. In this study, we analyzed the participation of the hepatic endonuclease deoxyribonuclease 1 (DNASE1) during APAP-induced hepatotoxicity by employing a Dnase1 knockout (KO) mouse model. Male CD-1 Dnase1 wild-type (WT) (Dnase1+/+) and KO (Dnase1-/-) mice were treated with 2 different doses of APAP. Hepatic histopathology was performed, and biochemical parameters for APAP metabolism and necrosis were investigated, including depletion of glutathione/glutathione-disulfide (GSH+GSSG), beta-nicotinamide adenine dinucleotide (NADH+NAD+), and adenosine triphosphate (ATP); release of aminotransferases and Dnase1; and occurrence of DNA fragmentation. As expected, an APAP overdose in WT mice led to massive hepatocellular necrosis characterized by the release of aminotransferases and depletion of hepatocellular GSH+GSSG, NADH+NAD+, and ATP. These metabolic events were accompanied by extensive DNA degradation. In contrast, Dnase1 KO mice were considerably less affected. In conclusion, whereas the innermost pericentral hepatocytes of both mouse strains underwent necrosis to the same extent independent of DNA damage, the progression of necrosis to more outwardly located cells was dependent on DNA damage and only occurred in WT mice. Dnase1 aggravates APAP-induced liver necrosis.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge