English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular and Cellular Biology 1989-Aug

Depletion of topoisomerase II in isolated nuclei during a glucose-regulated stress response.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
J W Shen
J R Subjeck
R B Lock
W E Ross

Keywords

Abstract

Conditions, such as anoxia or glucose starvation, which induce the glucose-regulated set of stress proteins also lead to resistance to adriamycin (J. Shen, C. Hughes, C. Chao, J. Cai, C. Bartels, T. Gessner, and J. Subjeck, Proc. Natl. Acad. Sci. USA 84:3278-3282, 1987) and etoposide. We report here that chronic anoxia, glucose starvation, 2-deoxyglucose, the calcium ionophore A23187, glucosamine, ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA), and tunicamycin (all specific inducers of the glucose regulated system) lead to a rapid and selective depletion of topoisomerase II from isolated nuclei of Chinese hamster ovary cells. This effect precedes a decline in tritiated thymidine incorporation and a redistribution of cells from S into G1/G0. The depletion of the enzyme is not accompanied by a decline in mRNA levels. We have also examined the mutant Chinese hamster K12 cell line which is temperature sensitive for expression of glucose-regulated proteins. When nuclei were isolated from K12 cells incubated at the nonpermissive temperature, a loss of topoisomerase II was again observed in congruence with the expression of stress proteins and cellular resistance to etoposide. These changes were not obtained in parental Wg1A cells incubated at the same temperature. These studies indicate that topoisomerase II is highly sensitive to glucose-regulated stresses and that its depletion from the nucleus, with the associated changes in cell cycle parameters, may represent general characteristics of the glucose-regulated state. Since anoxia and glucose starvation can occur during tumor development, this pathway for expression of drug resistance may have clinical ramifications.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge