English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Nutritional Biochemistry 2011-Sep

Deposition of docosahexaenoic acid (DHA) is limited in forebrain of young obese fa/fa Zucker rats fed a diet high in α-linolenic acid but devoid of DHA.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jinping Zhao
Melani E Gillam
Carla G Taylor
Hope A Weiler

Keywords

Abstract

Docosahexaenoic acid (DHA) is required for neurotransmitter synthesis and learning. Conversion of α-linolenic acid (ALA) to DHA is considered adequate to support brain function in youth, but it is unknown if brain DHA can be maintained in insulin resistant states. This study investigated brain fatty acid and desaturase activities in young insulin resistant Zucker rats on diets with and without DHA. Male fa/fa and lean rats were fed diets enriched with flaxseed (FXO, ALA: 35.5% fatty acids), menhaden (MO, DHA: 9.2%) or safflower oil (SO, linoleic acid: 54.1%) for 9 weeks, n=8 per diet per genotype. Compared to lean, the 15 week old fa/fa rats were obese (56% heavier) and insulin-resistant (>18-fold in homeostasis model assessment of insulin resistance). The forebrain of fa/fa rats had higher palmitoleic (16:1n-7) and dihomo-γ-linolenic (20:3n-6) acids, and higher Δ9, Δ6 but lower Δ5 (all P≤.006) desaturase indices than lean. The Δ9 and Δ6 desaturase indices positively, while the Δ5 negatively (all P≤.01) correlated with insulin resistance. The Δ9 desaturase index positively correlated with adiposity index. The percentage of forebrain DHA of fa/fa rats was lower (P=.011) than lean rats when fed FXO diet while there was no difference (P>.05) between fa/fa and lean rats fed MO or SO diet. Thus, the alterations in the fatty acid and desaturase indices in the brain were consistent inhibited forebrain synthesis of DHA in the fa/fa rats. ALA may not have potential to effectively serve as a precursor for synthesizing DHA for youth forebrain during insulin resistance since Δ5 desaturase activity is limited.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge