English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chemical and Pharmaceutical Bulletin 2015

Design, Synthesis, Biological Evaluation, and Antioxidant and Cytotoxic Activity of Heteroatom-Substituted 1,4-Naphtho- and Benzoquinones.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Nahide Gülşah Deniz
Cemil Ibis
Zeliha Gokmen
Maryna Stasevych
Volodymyr Novikov
Olena Komarovska-Porokhnyavets
Mustafa Ozyurek
Kubilay Guclu
Didem Karakas
Engin Ulukaya

Keywords

Abstract

In the present paper, we report the synthesis, characterization, and biological evaluation as antifungal, antibacterial, antioxidant, and cytotoxic/anticancer agents of N-, S-, O-substituted-1,4-naphtho- and 2,5-bis(amino-substituted)-1,4-benzoquinone derivatives. In the synthesized compounds, antimicrobial activity at low concentrations against Escherichia coli B-906, Staphylococcus aureus 209-P, and Mycobacterium luteum B-917 bacteria and Candida tenuis VKM Y-70 and Aspergillus niger F-1119 fungi in comparison with controls was identified. 2-(N-Diphenylmethylpiperazin-1-yl)-3-chloro-1,4-naphthoquinone 9a was the most potent, with a minimum inhibitory concentration value of 3.9 µg/mL against test culture M. luteum. The synthesized compounds were screened for their antioxidant capacity using the cupric-reducing antioxidant capacity (CUPRAC) method. 2,2'-[1-(2-Aminoethyl)piperazin-1-yl]-3,3'-dichloro-bis(1,4-naphthoquinone) 10 showed the highest antioxidant capacity, with a 0.455 CUPRAC-trolox equivalent antioxidant capacity (TEAC) coefficient. Other parameters of antioxidant activity (scavenging effects on OH(·), O2(·-), and H2O2) of these compounds were also determined. The cytotoxic activity of the compounds was investigated by employing the sulforhodamine B cell viability assay against A549 (lung), MCF-7 (breast), DU145 (prostate), and HT-29 (colon) cancer cell lines. Compound 10 exhibited the most powerful cytotoxic activity at a concentration of 20 µM against all cell lines. In addition to the strongest antioxidant activity of compound 10, it also had lowest IC50 values (<3 µM), warranting further in vivo studies due to its anticancer activity.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge