English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Computational Biology and Chemistry 2016-10

Design, synthesis and computational evaluation of a novel intermediate salt of N-cyclohexyl-N-(cyclohexylcarbamoyl)-4-(trifluoromethyl) benzamide as potential potassium channel blocker in epileptic paroxysmal seizures.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
V Natchimuthu
Srinivas Bandaru
Anuraj Nayarisseri
S Ravi

Keywords

Abstract

The narrow therapeutic range and limited pharmacokinetics of available Antiepileptic drugs (AEDs) have raised serious concerns in the proper management of epilepsy. To overcome this, the present study attempts to identify a candidate molecule targeting voltage gated potassium channels anticipated to have superior pharmacological than existing potassium channel blockers. The compound was synthesized by reacting (S)-(+)-2,3-dihydro-1H-pyrrolo[2,1-c][1,4] benzodiazepine5,11(10H,11aH)-dione with 4-(Trifluoromethyl) benzoic acid (C8H5F3O2) in DMF and N,N'-dicyclohexylcarbodiimide (DCC) which lead to the formation of an intermediate salt of N-cyclohexyl-N-(cyclohexylcarbamoyl)-4-(trifluoromethyl)benzamide with a perfect crystalline structure. The structure of the compound was characterized by FTIR, 1H NMR and 13C NMR analysis. The crystal structure is confirmed by single crystal X-ray diffraction analysis. The Structure-Activity Relationship (SAR) studies revealed that substituent of fluoro or trifluoromethyl moiety into the compound had a great effect on the biological activity in comparison to clinically used drugs. Employing computational approaches the compound was further tested for its affinity against potassium protein structure by molecular docking in addition, bioactivity and ADMET properties were predicted through computer aided programs.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge