English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Electrophoresis 2007-Oct

Determination of caffeine in coffee products by dynamic complexation with 3,4-dimethoxycinnamate and separation by CZE.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Thiago Nogueira
Claudimir Lucio do Lago

Keywords

Abstract

A method based on the formation of pi-complexes with chlorogenate-like species was proposed for the determination of caffeine in regular (nondecaffeinated) and decaffeinated coffee. Both caffeate and 3,4-dimethoxycinnamate were able to transform caffeine--a neutral species in aqueous solutions--into an anionic species. The usage of 3,4-dimethoxycinnamate in the running electrolyte is advantageous, because of its greater chemical stability and the improved resolution of the peaks of caffeine, theobromine, and theophylline. Negative peaks were registered with a capacitively coupled contactless conductivity detector when solutions of these alkylxanthines were analyzed with a BGE composed of 20 mmol/L 3,4-dimethoxycinnamic acid and pH adjusted to 8.5 with Tris. This behavior was expected, because the complex is larger and thus should move slower than the free anion. Caffeine was determined in ground and instant coffee with precision and accuracy that meet Brazilian norms about such products. The LOD was estimated as 33 mg/L, which corresponds to 0.8 and 0.3 mg of caffeine per gram of dry instant coffee and ground coffee, respectively. For the case of decaffeinated coffee, ten times preconcentration with dichloromethane was carried out to allow the quantitation of caffeine, which should not exceed the concentration of 1 mg/g in dry matter.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge