English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of drug delivery 2018

Development and Characterization of Solid Lipid Nanoparticles Containing Herbal Extract: In Vivo Antidepressant Activity.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
P Vijayanand
V Jyothi
N Aditya
A Mounika

Keywords

Abstract

In alternate systems of medicine like Ayurveda and traditional Chinese medicine, Hibiscus rosa sinensis and its extracts have been traditionally prescribed for their antidepressant activity. Crude extracts and rudimentary formulations approaches are good for proof-of-concept studies; however, these formulations are fraught with problems like poor oral bioavailability and high variability between subjects. Systematic drug delivery approaches could prove effective in addressing some of these problems. In this study, we report the development of Hibiscus rosa sinensis extract loaded solid lipid nanoparticles (HSLNs) using glycerol monostearate or beeswax as lipids. The HSLNs were evaluated for their size, surface charge, and morphology. The optimized HSLNs were tested for antidepressant activity in male Swiss albino mice. It was found that, with the optimized procedure, HSLNs of ~175 nm, carrying negative charge and nearly spherical shape, could be obtained. The in vivo test results suggested that there were marked differences in the immobility times of the test animals. Moreover, with HSLNs, it was found that at doses several times lower than the native crude extract dose, similar pharmacological effect could be obtained. These initial findings suggest that encapsulating phytopharmaceuticals into advanced delivery systems like solid lipid nanoparticles can be an effective strategy in improving their in vivo performance.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge