English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Microbiological Methods 2013-Jul

Development of a simple root model to study the effects of single exudates on the development of bacterial community structure.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Maren Ziegler
Marion Engel
Gerhard Welzl
Michael Schloter

Keywords

Abstract

The plant root interface is a hot spot for microbial activities. Root exudates are the key compounds that drive microbial performance. However quality and amount of root exudates are highly dynamic in time and space, thus a direct influence of a single compound on a microbial community composition is fairly impossible to study in nature. Therefore it was the aim of this project to develop an artificial root model (ARM), and investigate the influence of three compounds which have often been described as root exudates acting as model compounds for carbohydrates, organic acids and amino acids (glucose, malic acid and serine) on the development of bacterial communities and time on the ARM based on 16S rRNA derived TRFLP pattern. The ARM consisted of a slide covered with low melting agarose, where 8 different compounds which have been described as typical root exudates were embedded. The ARMs were incubated in soil for 2, 5, 9 and 20 days, before the analysis of the developed bacterial community structure was done. The bacterial community composition was in good agreement after 9 days of incubation of the ARM in soil with the root associated microflora of Arabidopsis thaliana shortly before flowering. The single compounds of the exudates mix had different effects on the development of ARM derived bacterial communities. Whereas the experiments where glucose was omitted gave no significant differences in the development of bacterial communities over time compared to the ARM where the standard mixture of exudates had been applied, there was a pronounced effect visible mainly after two days of incubation of the ARM in the experiments where no malic acid was added to the exudate mixture. At later time points ARMs with standard exudates' mixture and those where malic acid had been omitted, the bacterial community composition did not differ. The experiments where serine was omitted mainly induced shifts in the bacterial community composition compared to the ARM with standard exudates' mixture at the latest sampling time point (20 days of incubation).

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge