English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neuroscience Research 2007-Feb

Developmental abnormalities in the nerves of peripheral myelin protein 22-deficient mice.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Stephanie A Amici
William A Dunn
Lucia Notterpek

Keywords

Abstract

Peripheral myelin protein 22 (PMP22) is a tetraspan glycoprotein whose misexpression is associated with a family of hereditary peripheral neuropathies. In a recent report, we have characterized a novel PMP22-deficient mouse model in which the first two coding exons were replaced by the lacZ reporter. To investigate further the myelin abnormalities in the absence of PMP22, sciatic nerves and dorsal root ganglion (DRG) neuron explant cultures from PMP22-deficient mice were studied at various stages of myelination. Throughout the first 3 months of postnatal development, myelin protein and beta4 integrin levels are dramatically reduced, whereas p75 and beta1 integrin remain elevated. By immunostaining, the distributions of several glial proteins, including beta4 integrin, the voltage-gated potassium channel Kv1.1, and E-cadherin, are altered. Schwann cells from PMP22-deficient mice are able to produce limited amounts of myelin in DRG explant cultures, yet the internodal segments are dramatically fewer and shorter. The comparison of PMP22-deficient mice with other PMP22 mutant models reveals that the decrease in beta4 integrin is specific to an absence of PMP22. Furthermore, whereas lysosome-associated membrane protein 1 and ubiquitin are notably up-regulated in nerves of PMP22-deficient mice, heat shock protein 70 levels remain constant or decrease compared with wild-type or PMP22 mutant samples. Together these results support a role for PMP22 in the early events of peripheral nerve myelination. Additionally, although myelin abnormalities are a commonality among PMP22 neuropathic models, the underlying subcellular mechanisms are distinct and depend on the specific genetic abnormality.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge