English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Food and Chemical Toxicology 1991-Aug

Developmental toxicology of potato alkaloids in the frog embryo teratogenesis assay--Xenopus (FETAX).

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
M Friedman
J R Rayburn
J A Bantle

Keywords

Abstract

Potatoes frequently contain growth inhibitors and toxic compounds including digestive enzyme inhibitors, lectins and glycoalkaloids. The literature suggests that Solanum alkaloids have the ability to induce neurological damage such as spina bifida and other malformations. As part of a programme of improvement in the safety of potatoes using molecular plant genetics and parallel food safety evaluation, we evaluated the effect of several potato glycoalkaloids and aglycones in the frog embryo teratogenesis assay--Xenopus (FETAX) with and without metabolic activation by Aroclor 1254-induced rat liver microsomes. The data suggest that the glycoalkaloid alpha-chaconine is teratogenic and more embryotoxic than alpha-solanine, in terms of the median lethal concentration (LC50) after 96 hr of exposure, the concentration inducing gross terata in 50% of the surviving frog embryos (96-hr EC50, malformation), and the minimum concentration needed to inhibit the growth of the embryos. Since these two compounds differ only in the nature of the carbohydrate side chain attached to the 3-OH group of solanidine, the side chain appears to be an important factor in governing teratogenicity. The aglycones demissidine, solanidine and solasodine were less toxic than the glycosides alpha-chaconine and alpha-solanine. The in vitro teratogenesis assay should be useful for: (a) predicting the teratogenic potential of solanaceae alkaloids, glycoalkaloids and related natural products; and (b) facilitating experimental approaches to suppress plant genes and enzymes that control the biosynthesis of the most toxic compounds.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge