English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biological Chemistry 2002-Jan

Diacylglycerol (DAG)-lactones, a new class of protein kinase C (PKC) agonists, induce apoptosis in LNCaP prostate cancer cells by selective activation of PKCalpha.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Maria Laura Garcia-Bermejo
Federico Coluccio Leskow
Teruhiko Fujii
Qiming Wang
Peter M Blumberg
Motoi Ohba
Toshio Kuroki
Kee-Chung Han
Jeewoo Lee
Victor E Marquez

Keywords

Abstract

Phorbol esters, the archetypical (PKC) activators, induce apoptosis in androgen-sensitive LNCaP prostate cancer cells. In this study we evaluate the effect of a novel class of PKC ligands, the diacylglycerol (DAG)-lactones, as inducers of apoptosis in LNCaP cells. These unique ligands were designed using novel pharmacophore- and receptor-guided approaches to achieve highly potent DAG surrogates. Two of these compounds, HK434 and HK654, induced apoptosis in LNCaP cells with much higher potency than oleoyl-acetyl-glycerol or phorbol 12,13-dibutyrate. Moreover, different PKC isozymes were found to mediate the apoptotic effect of phorbol 12-myristate 13-acetate (PMA) and HK654 in LNCaP cells. Using PKC inhibitors and dominant negative PKC isoforms, we found that both PKCalpha and PKCdelta mediated the apoptotic effect of PMA, whereas only PKCalpha was involved in the effect of the DAG-lactone. The PKCalpha selectivity of HK654 in LNCaP cells contrasts with similar potencies in vitro for binding and activation of PKCalpha and PKCdelta. Consistent with the differences in isoform dependence in intact cells, PMA and HK654 show marked differences in their abilities to translocate PKC isozymes. Both PMA and HK654 induce a marked redistribution of PKCalpha to the plasma membrane. On the other hand, unlike PMA, HK654 translocates PKCdelta predominantly to the nuclear membrane. Thus, DAG-lactones have a unique profile of activation of PKC isozymes for inducing apoptosis in LNCaP cells and represent the first example of a selective activator of a classical PKC in cellular models. An attractive hypothesis is that selective activation of PKC isozymes by pharmacological agents in cells can be achieved by differential intracellular targeting of each PKC.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge