English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Nutritional Biochemistry 2010-May

Diallyl disulfide causes caspase-dependent apoptosis in human cancer cells through a Bax-triggered mitochondrial pathway.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Nagathihalli S Nagaraj
Kandangath R Anilakumar
Om V Singh

Keywords

Abstract

Diallyl disulfide (DADS), an important component of garlic (Allium sativum) derivative, has been demonstrated to exert a potential molecular target against human cancers. We investigated DADS-induced expressions of Apaf1, cystatin B, caspase-3 and FADD (fas-associated protein with death domain) in breast, prostate and lung cancer cells. These showed coincident data when further examined by quantitative reverse transcription-polymerase chain reaction and Western blot analysis. Furthermore, DADS induced a marked amount of Bax translocation, cytochrome c release and activation of caspase-3 and caspase-9. DADS-treated tumor cells triggered mitochondria-mediated signaling pathways that led to a significant increase in apoptosis induction. Further studies with caspase-3 and caspase-9 inhibitors (zDEVD-fmk and zLEHD-fmk, respectively) proved that DADS induces apoptosis through a caspase-3-dependent pathway. DADS is only an agent used in the study. The molecular mechanism presented therefore provides strong additional support to the hypothesis that DADS is a strong inducer of apoptosis through a Bax-triggered mitochondria-mediated and caspase-3-dependent pathway. This study shows clearly that DADS causes caspase-dependent apoptosis in human cancer cells through a Bax-triggered mitochondrial pathway. Therefore, the mitochondrial pathway might be the target for cancer chemoprevention and/or chemotherapy by DADS.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge