English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BMC Microbiology 2018-Oct

Dickeya zeae strains isolated from rice, banana and clivia rot plants show great virulence differentials.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Ming Hu
Jieling Li
Ruiting Chen
Wenjun Li
Luwen Feng
Lei Shi
Yang Xue
Xiaoyin Feng
Lianhui Zhang
Jianuan Zhou

Keywords

Abstract

BACKGROUND

Dickeya zeae is the causal agent of maize and rice foot rot diseases, but recently it was also found to infect banana and cause severe losses in China. Strains from different sources showed significant diversity in nature, implying complicated evolution history and pathogenic mechanisms.

RESULTS

D. zeae strains were isolated from soft rot banana plants and ornamental monocotyledonous Clivia miniata. Compared with D. zeae strain EC1 isolated from rice, clivia isolates did not show any antimicrobial activity, produced less extracellular enzymes, had a much narrow host ranges, but released higher amount of extracellular polysaccharides (EPS). In contrast, the banana isolates in general produced more extracellular enzymes and EPS than strain EC1. Furthermore, we provided evidence that the banana D. zeae isolate MS2 produces a new antibiotic/phytotoxin(s), which differs from the zeamine toxins produced by rice pathogen D. zeae strain EC1 genetically and in its antimicrobial potency.

CONCLUSIONS

The findings from this study expanded the natural host range of D. zeae and highlighted the genetic and phenotypic divergence of D. zeae strains. Conclusions can be drawn from a series of tests that at least two types of D. zeae strains could cause the soft rot disease of banana, with one producing antimicrobial compound while the other producing none, and the D. zeae clivia strains could only infect monocot hosts. D. zeae strains isolated from different sources have diverse virulence characteristics.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge