English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Annals of Botany 2008-Sep

Diel shifts in carboxylation pathway and metabolite dynamics in the CAM bromeliad Aechmea 'Maya' in response to elevated CO2.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
J Ceusters
A M Borland
E Londers
V Verdoodt
C Godts
M P De Proft

Keywords

Abstract

OBJECTIVE

The deployment of temporally separated carboxylation pathways for net CO(2) uptake in CAM plants provides plasticity and thus uncertainty on how species with this photosynthetic pathway will respond to life in a higher-CO(2) world. The present study examined how long-term exposure to elevated CO(2) influences the relative contributions that C(3) and C(4) carboxylation make to net carbon gain and to establish how this impacts on the availability of carbohydrates for export and growth and on water use efficiency over the day/night cycle.

METHODS

Integrated measurements of leaf gas exchange and diel metabolite dynamics (e.g. malate, soluble sugars, starch) were made in leaves of the CAM bromeliad Aechmea 'Maya' after exposure to 700 micromol mol(-1) CO(2) for 5 months.

RESULTS

There was a 60 % increase in 24-h carbon gain under elevated CO(2) due to a stimulation of daytime C(3) and C(4) carboxylation in phases II and IV where water use efficiency was comparable with that measured at night. The extra CO(2) taken up under elevated CO(2) was largely accumulated as hexose sugars during phase IV and net daytime export of carbohydrate was abolished. Under elevated CO(2) there was no stimulation of dark carboxylation and nocturnal export and respiration appeared to be the stronger sinks for carbohydrate.

CONCLUSIONS

Despite the increased size of the soluble sugar storage pool under elevated CO(2), there was no change in the net allocation of carbohydrates between provision of substrates for CAM and export/respiration in A. 'Maya'. The data imply the existence of discrete pools of carbohydrate that provide substrate for CAM or sugars for export/respiration. The 2-fold increase in water-use efficiency could be a major physiological advantage to growth under elevated CO(2) in this CAM bromeliad.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge