English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Toxicology in Vitro 2009-Sep

Diferuloylmethane augments the cytotoxic effects of piplartine isolated from Piper chaba.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
D Jyothi
P Vanathi
P Mangala Gowri
V Rama Subba Rao
J Madhusudana Rao
A S Sreedhar

Keywords

Abstract

Natural compound based anticancer drug discovery is gaining interest against a wide variety of tumors. E-piplartine (trans-piplartine), a natural compound isolated from Piper chaba roots is examined against rat histiocytoma (BC-8), mouse embryonal carcinoma (PCC4), mouse macrophages (P388D1 and J774), and human neuroblastoma (IMR32) tumor cells. While Z-piplartine (cis-piplartine) failed to induce cytotoxicity (even at higher concentrations, 50 microM), E-piplartine induced a dose-dependent cytotoxicity (2-24 microM) in different tumor cells. The combinatorial treatment of piplartine with diferuloylmethane (curcumin), an anti-inflammatory and anticancer agent, significantly enhanced the piplartine induced cytotoxicity in tumor cells. Diferuloylmethane itself is not cytotoxic at 15 microM concentration; however, potentiated the piplartine induced cytotoxicity. The tumor cell killing with piplartine is preceded by G1 cell cycle arrest, and surpassed diferuloylmethane induced G2/M arrest when used in combination. In PCC4 cells, piplartine inhibited the cell cycle progression by inactivating cdk2 and destabilizing cyclin D1, whereas diferuloylmethane combination inhibited the ERK1/2 and Raf-1 signaling in addition to the inhibition of cell cycle progression. The over expression of heat shock protein 70, Hsp70 in rat histiocytic tumor cells interfered with piplartine induced cytotoxicity, hence, a cross talk between stress response and anticancer agents is presented. Our data demonstrates the biological and medicinal importance of piplartine isolated from the roots of P. chaba, and indicates that E-piplartine may be a promising candidate to use in combinatorial treatments to combat cancer.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge