English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neurotrauma 2018-Nov

Differences in Cortical Gray Matter Atrophy of Paraplegia and Tetraplegia after Complete Spinal Cord Injury.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Keerthana Deepti Karunakaran
Jie He
Jian Zhao
Jian-Ling Cui
Yu-Feng Zang
Zhong Zhang
Bharat B Biswal

Keywords

Abstract

Anatomical studies of SCI using Magnetic Resonance Imaging (MRI) report diverging observations, from 'no changes' to 'tissue atrophy in motor and non-motor regions.' These discrepancies among studies can be attributed to heterogeneity in extent, level and post-injury duration observed within the SCI population. But, no studies have investigated structural changes associated with different levels of injury (paraplegia vs. tetraplegia). High-resolution MRI images were processed using Voxel-Based Morphometry technique to compare regional GM volume (GMV) between 16 complete paraplegia and 7 complete tetraplegia SCI subjects scanned within two years of injury when compared to 22 age-matched healthy controls using one-way Analysis of Covariance (ANCOVA). A post-hoc analysis using region of interest based approach was employed to quantify GMV differences between healthy controls and subgroups of SCI. A voxel-wise one sample t-test was also performed to evaluate the mean effect of post-injury duration on GMV of SCI group. ANCOVA resulted in altered GMV in inferior frontal gyrus, bilateral mid orbital gyrus extending to rectal gyrus and anterior cingulate cortex. Post-hoc analysis, in general, indicated GM atrophy after SCI but tetraplegia showed a greater decrease in GMV when compared to paraplegia and healthy controls. Further, the GMV of the middle frontal gyrus, superior frontal gyrus, inferior frontal gyrus, insula, mid-orbital gyrus and middle temporal gyrus was positively correlated with post-injury duration in both paraplegia and tetraplegia groups. GM atrophy after SCI is affected by the level of cord injury, with higher levels of injury resulting in greater loss of GMV. The magnitude of GMV loss in the frontal cortex after SCI also appears to be dynamic within the first two years of injury. Understanding the effect of injury level and injury duration on structural changes following SCI can help better understand the mechanisms leading to positive and negative clinical outcome in SCI patients.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge