English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Science and Pollution Research 2014-Apr

Differences in phosphorus translocation contributes to differential arsenic tolerance between plants of Borreria verticillata (Rubiaceae) from mine and non-mine sites.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
N V Campos
M E Loureiro
A A Azevedo

Keywords

Abstract

We have identified new arsenic-tolerant plant species Borreria verticillata (Rubiaceae) that has mine and non-mine populations at a highly contaminated site (CS) and an uncontaminated site (UCS), respectively, in Brazil. Plants of B. verticillata from both sites were cultivated at different As and P concentrations. At low P concentration, CS plants showed reduced As uptake, higher P translocation to shoots, higher constitutive levels of phenolic compounds in roots, and higher tolerance to this metalloid. At the lowest P and highest As concentration, CS plants showed higher biomass. In addition, CS plants showed higher P uptake in the absence of As, suggesting that more efficient P translocation could contribute more to tolerance than decreased As uptake. In contrast, at low P concentration, UCS plants showed higher As content in shoot and root, increase in phenol levels in roots, reduction in dry biomass, and decrease of the effective efficiency of photochemical reactions and the electron transport rate. Under higher P concentrations, the decrease in As uptake was similar in both populations. The differences between the two populations with respect to As and P uptake suggest that altered kinetic properties or expression of P transporters contribute to higher As tolerance in B. verticillata from CS. As a ruderal and As-tolerant plant, B. verticillata could be successfully used for the revegetation of contaminated soils.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge