English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
American Journal of Physiology - Gastrointestinal and Liver Physiology 2009-Nov

Differential adipokine response in genetically predisposed lean and obese rats during inflammation: a role in modulating experimental colitis?

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Niall P Hyland
Adam P Chambers
Catherine M Keenan
Quentin J Pittman
Keith A Sharkey

Keywords

Abstract

The relationship between a predisposition to obesity and the development of colitis is not well understood. Our aim was to characterize the adipokine response and the extent of colitis in diet-induced obese (DIO) rats. DIO and control, diet-resistant (DR) animals were administered either saline or trinitrobenzene sulfonic acid (TNBS) to induce colitis. Macroscopic damage scores and myeloperoxidase (MPO) activity were measured to determine the extent of inflammation. Trunk blood was collected for the analysis of plasminogen activator inhibitor-1 (PAI-1) as well as leptin, ghrelin, and adiponectin. Colonic epithelial physiology was assessed using Ussing chambers. DIO rats had a modestly increased circulating PAI-1 before TNBS treatment; however, during colitis, DR animals had more than a fourfold increase in circulating PAI-1 compared with DIO rats. Circulating leptin was higher in DIO rats compared with DR animals, in the inflamed and noninflamed states. These changes in TNBS-induced adipokine profile were accompanied by decreased macroscopic tissue damage score in DIO animals compared with DR tissues. Furthermore, TNBS-treated DR animals lost significantly more weight than DIO rats during active inflammation. Colonic epithelial physiology was comparable between groups, as was MPO activity. The factors contributing to the decreased colonic damage are almost certainly multifold, driven by both genetic and environmental factors, of which adipokines are likely to play a part given the increasing body of evidence for their role in modulating intestinal inflammation.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge