English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cancer Research 1992-Mar

Differential effects of bryostatin 1 and phorbol ester on human breast cancer cell lines.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
M J Kennedy
L J Prestigiacomo
G Tyler
W S May
N E Davidson

Keywords

Abstract

The effects of the protein kinase C (PKC) activators, phorbol ester 12-O-tetradecanoyl-13-phorbol acetate (TPA) and the marine natural product, bryostatin 1, on the growth and morphology of human breast cancer cell lines were examined. TPA (1 to 100 nM) inhibited growth of four of six cell lines by up to 75% in 5-day cultures. Bryostatin 1 inhibited growth of only MCF-7 cells and only at a high dose (100 nM). However, bryostatin 1 completely antagonized the growth inhibition and morphological changes induced by TPA in MCF-7 cells. The divergent effects of these two agents are associated with differing effects on PKC activity and isoform expression in MCF-7 cells. TPA induced rapid translocation of the PKC-alpha isozyme and PKC activity to the membrane fraction of MCF-7 cells. In contrast, bryostatin 1 treatment resulted in the loss of the PKC-alpha isozyme and PKC activity from both cytosolic and membrane compartments within 10 min of treatment. In coincubation assays the bryostatin 1 effect was dominant over that of TPA. Similar effects on PKC-alpha isozyme and PKC activity were seen in a second cell line whose growth was inhibited by TPA but not by bryostatin 1, MDA-MB-468. In contrast, in the T47D cell line, where TPA was not growth inhibitory, TPA failed to induce translocation of PKC-alpha to the cell membrane. Bryostatin, however, still caused loss of PKC-alpha isozyme and PKC activity from cytosolic and membrane fractions. Thus, differential actions of bryostatin 1 and TPA on PKC activity and alpha-isoform level in the membrane-associated fraction of MCF-7 and MDA-MB-468 cells may account for the divergent effects of these two agents on cell growth and morphology. These results suggest that the PKC-alpha isoform may specifically play a role in inhibiting growth of human breast cancer cells.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge