English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Horticulture Research 2019

Differential regulation of the anthocyanin profile in purple kiwifruit (Actinidia species).

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Yongyan Peng
Kui Lin-Wang
Janine Cooney
Tianchi Wang
Richard Espley
Andrew Allan

Keywords

Abstract

Anthocyanins are a group of secondary metabolites that colour fruit and flowers orange, red, purple or blue depending on a number of factors, such as the basic structure, co-pigmentation, metal ion complexation and vacuolar pH. The biosynthesis of anthocyanin is regulated at the transcriptional level by a group of transcription factors, the MYB-bHLH-WD40 (MBW) complex. In this study, the purple colouration in several kiwifruit (Actinidia) species was identified and characterised as red cyanidin-based and blue delphinidin-based anthocyanins. The differential pigmentation in the skin and flesh can be attributed to the differential ratio of cyanidin and delphinidin derivatives accumulated in the total anthocyanin profile. The expression of anthocyanin biosynthetic genes chalcone synthase (CHS), flavonoid 3-O-glucosyltransferase (F3GT), flavonoid 3'-hydroxylase (F3'H) and flavonoid 3'5'-hydroxylase (F3'5'H) is crucial for anthocyanin accumulation. However, the balance of expression of the F3'H and F3'5'H genes appears responsible for the ratio of cyanidin and delphinidin derivatives, while a lack of CHS, F3GT and MYB110 expression is responsible for a lack of total anthocyanins. The transcriptional regulation of the F3'H and F3'5'H promoters by the R2R3 MYB transcription factor MYB110 is markedly different in tobacco transient assays. When kiwifruit MYB10 or MYB110 are over-expressed in Actinidia chinensis both cyanidin-based and delphinidin-based anthocyanins are elevated, but F3'H and F3'5'H genes are not strongly correlated with MYB expression. These results suggest that the core kiwifruit anthocyanin pathway genes are dependent on characterised MYB transcription factors, while other regulatory proteins are more directly responsible for the expression of the F3'H and F3'5'H genes.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge