English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Drug and Chemical Toxicology 2010-Oct

Diminution of free radical induced DNA damage by extracts/fractions from bark of Schleichera oleosa (Lour.) Oken.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Tarunpreet S Thind
Geetanjali Rampal
Satyam K Agrawal
Ajit K Saxena
Saroj Arora

Keywords

Abstract

The present study was undertaken to investigate the effect of extracts of Schleichera oleosa (Sapindaceae) for its cytotoxic and hydroxyl radical-scavenging activities. The bark of the tree was used to prepare extracts with different solvents (i.e., hexane, chloroform, ethyl acetate, methanol, and water). The extracts were initially assessed for their in vitro cytotoxicity potential in the sulforhodamine B dye assay against cell lines, such as 502713 (colon), SW-620 (colon), HCT-15 (colon), A-549 (lung), HEP-2 (liver), SK-NS-H (central nervous system), and IMR-32 (neuroblastoma). It was observed that the water extract was effective against all the three colon cancer cell lines, while only methanol and water extracts were effective against A-549 (lung) and HEP-2 (liver), respectively. As DNA damage is one of the hallmarks of cell death, so the extracts were assessed for their ability to scavenge hydroxyl radicals, in the deoxyribose degradation assay (site- and nonsite specific) as well as their protective effect against the hydroxyl radical-induced DNA damage in the plasmid nicking assay, using pBR322. It was observed that all the extracts, except chloroform and hexane, exhibited relatively greater antioxidant activity in the nonsite-specific than in the site-specific assay. Similarly, the extracts were also found to be effective in inhibiting the hydroxyl radical-induced unwinding of supercoiled DNA, which further confirmed the hydroxyl radical-scavenging ability of the extracts in the deoxyribose degradation method.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge