English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Cellular Biochemistry 2010-Apr

Dioscorealide B suppresses LPS-induced nitric oxide production and inflammatory cytokine expression in RAW 264.7 macrophages: The inhibition of NF-kappaB and ERK1/2 activation.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Poonsit Hiransai
Suvina Ratanachaiyavong
Arunporn Itharat
Potchanapond Graidist
Prasit Ruengrairatanaroj
Juntipa Purintrapiban

Keywords

Abstract

Dioscorealide B (DB), a naphthofuranoxepin has been purified from an ethanolic extract of the rhizome of Dioscorea membranacea Pierre ex Prain & Burkill which has been used to treat inflammation and cancer in Thai Traditional Medicine. Previously, DB has been reported to have anti-inflammatory activities through reducing nitric oxide (NO) and tumor necrosis factor-alpha (TNF-alpha) production in lipopolysaccharides (LPS)-induced RAW 264.7 macrophage cells. In this study, the mechanisms of DB on LPS-induced NO production and cytokine expression through the activation of nuclear factor-kappaB (NF-kappaB) and ERK1/2 are demonstrated in RAW 264.7 cells. Through measurement with Griess's reagent, DB reduced NO level with an IC(50) value of 2.85 +/- 0.62 microM that was due to the significant suppression of LPS-induced iNOS mRNA expression as well as IL-1beta, IL-6, and IL-10 mRNA at a concentration of 6 microM. At the signal transduction level, DB significantly inhibited NF-kappaB binding activity, as determined using pNFkappaB-Luciferase reporter system, which action resulted from the prevention of IkappaBalpha degradation. In addition, DB in the range of 1.5-6 microM significantly suppressed the activation of the ERK1/2 protein. In conclusion, the molecular mechanisms of DB on the inhibition of NO production and mRNA expression of iNOS, IL-1beta, IL-6, and IL-10 were due to the inhibition of the upstream kinases activation, which further alleviated the NF-kappaB and MAPK/ERK signaling pathway in LPS-induced RAW264.7 macrophage cells.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge