English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biosensors and Bioelectronics 2019-Jul

Direct PCR-free electrochemical biosensing of plant-food derived nucleic acids in genomic DNA extracts. Application to the determination of the key allergen Sola l 7 in tomato seeds.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Magda Pereira-Barros
M Barroso
Laura Martín-Pedraza
Eva Vargas
Sara Benedé
Mayte Villalba
João Rocha
Susana Campuzano
José Pingarrón

Keywords

Abstract

A novel and disposable electrochemical biosensor for PCR-free and selective detection of Sola l 7, a non-specific lipid transfer protein (nsLTP) found in tomato seeds associated to severe symptoms of tomato-allergic patients, is reported in this work. The methodology involves the formation of DNA/RNA heterohybrids by sandwich hybridization of a specific fragment of the Sola l 7 allergen coding sequence with appropriate RNA probes designed and described for the first time in this work. Labeling was carried out with commercial antibodies specific to the heteroduplexes and secondary antibodies conjugated with HRP onto the surface of magnetic beads. Amperometric transduction was performed upon magnetic capture of the resulting magnetic bioconjugates on screen-printed electrodes using the system H2O2/HQ. A comparison of the sandwich hybridization format with a direct approach as well as between different labeling strategies was performed. The LOD value achieved was 0.2 pM (5 amol in 25 μL). The biosensor was successfully applied to the selective analysis of the targeted Sola l 7 specific region directly in just 100 ng of non-fragmented denatured genomic DNA extracted from tomato seeds.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge