English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Photochemistry and Photobiology 1999-May

Direct comparison of DNA damage, isomerization of urocanic acid and edema in the mouse produced by three commonly used artificial UV light sources.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
D B Yarosh
J Kibitel
S E Ullrich
T H Kim
H N Ananthaswamy
P Krien
A Fourtanier
M L Kripke

Keywords

Abstract

Exposure to sunlight can result in a number of harmful effects, including sunburn, erythema, premature aging of the skin, immune suppression and skin cancer. Studies designed to understand the underlying mechanisms often depend upon the use of artificial sources of UV radiation. Unfortunately, conclusions from different laboratories using different lamps often conflict, and it is entirely possible that the different spectra of sunlights used in each may be a source of conflict. To minimize confounding variables, we employed two of the more commonly used UV light sources, fluorescent sunlamps, such as the FS-40 and Kodacel-filtered FS-40 sunlamps, and a xenon arc solar simulator and compared, in one series of standardized experiments, the effects of each light source on DNA damage, urocanic acid isomerization and edema formation. The dose-response curves, calculated by linear regression or curve fitting were compared. The data indicate that DNA damage and urocanic acid isomerization were more sensitive to shorter wavelengths of UV than longer wavelengths, and the biological endpoint of edema most closely correlated with the induction of DNA damage. The results emphasize the dominance of shorter wavelengths within the UV spectrum in damaging biological tissues, even when the solar simulator, which contains significant amounts of UVA, was used and demonstrate that each light source has a characteristic pattern of induction of biochemical and biological endpoints.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge